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Statistical properties of coupled dynamic-stochastic systems are studied within a combination of the maxi-
mum information principle and the superstatistical approach. The conditions at which the Shannon entropy
functional leads to power-law statistics are investigated. It is demonstrated that, from a quite general point of
view, the power-law dependencies may appear as a consequence of “global” constraints restricting both the
dynamic phase space and the stochastic fluctuations. As a result, at sufficiently long observation times the
dynamic counterpart is driven into a nonequilibrium steady state whose deviation from the usual exponential
statistics is given by the distance from the conventional equilibrium.
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I. INTRODUCTION

Power-law distributions are quite common for complex
systems of a different nature �1�. Several theoretical schemes
have been developed in order to understand this behavior.
The concepts of the self-organized criticality �2� and highly
optimized tolerance �3� have been extensively illustrated
within various kinetic �sandpile, slider block, forest fire, etc.�
models �3,4�, which exhibit a triggering between different
regimes, accompanied by power-law dependencies—
avalanches. Also, a power-law distribution of the trapping
times is found �5� to be responsible for the aging in a glassy
system. More recent studies reported on similar phenomena
in inelastic dissipative gases �6�, stochastic processes with
multiplicative noise �7�, clustering models �8�, and conden-
sation in porous media �9�. Observations of the power-law
features in a variety of much more complex �physical, bio-
logical, social, etc.� systems �4,8� led to further searches for
a generic mechanism, responsible for such a behavior inde-
pendently of system microscopic specificities or model ap-
proximations.

A remarkable step was to find �10� that a power law could
appear from the usual exponential with fluctuating param-
eters. This is a basic idea of the superstatistical approach
�11–13� explaining the power-law statistics in a system as a
result of fluctuations in its surrounding �background�. The
latter can be modeled as a stochastic �10–14� or as a dynamic
�Hamiltonian� �15–17� process. In particular, dynamical cor-
relations in a subsystem have been shown �18,19� to lead to
power-law statistics, accompanied by an effective supercor-
relation and phase space entrainment. On the other hand, in
nonequilibrium situations the dynamics alone does not fix
the system state, which becomes history dependent. In that
case a form of non-Gibbsian distributions is shown �20� to be
additionally controlled by a distance from the equilibrium.

Nevertheless the information on the source of the back-
ground fluctuations is not always available. Moreover, in
many cases �e.g., optimal control �21� or insertion into flex-
ible environments �22�� the two counterparts are strongly
coupled and the background statistics is �or should be� con-
ditional to the system properties. In that case the background
evolution cannot be modeled as a process �e.g., fluctuating
temperature �11� or mass �14�� independent of the system

state. Lacking any detailed information on the coupling, one
has to resort to the inference methods.

The maximum entropy inference methods �23� have been
developed in this context. These are based on parametrized
information entropy measures �Tsallis �24� or Renyi �25,26��,
which have the Shannon form as a limit. Despite various
successful applications, this approach has generated several
controversial points �27� related to the meaning of the en-
tropic index, the nonadditivity effects, spurious correlations,
and the biased averaging �28�. This stimulated further steps
�29,30� towards deriving nonexponential distributions by
maximizing the Shannon entropy under suitable constraints.

Therefore, it seems promising to develop a scheme, ca-
pable of merging the advantages of the maximum entropy
and the superstatistical approaches. More specifically, our
main goal is to find out the conditions at which the Shannon
entropic form leads to the background statistics, coherent
with the one introduced within the superstatistical approach.
This would allow one to avoid using the parametrized en-
tropy measures and, on the other hand, to extract the most
general features, independent of the model details. In its turn,
this allows us to clarify the mechanism of the corresponding
power-law dependencies and to understand the essence of the
nonadditivity effects.

II. COUPLED SYSTEMS

With this purpose we consider a many-body dynamic �de-
terministic� system in contact with a fluctuating background.
In contrast to coupled dynamic systems �31�, in our case the
two subsystems are of different origin and thus require dif-
ferent levels of description �32�. The background �the
stochastic system� is considered to be a source of some rel-
evant quantity, � �e.g., pore size, temperature, etc.�, which
fluctuates according to a probability distribution f���. Quite
often the different nature of the two subsystems leads to a
well-defined separation of the relaxation time scales �13,14�,
typical for self-organizing �2,33� or glassy systems �5�;
namely, the system relaxation is supposed to be much faster
than the background fluctuations, such that for any back-
ground state the system can reach an equilibrium �or station-
ary� state with a conditional thermodynamic function ��� ���.
In principle, this could be any function, suitable for an ad-
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equate description of the system internal order and linking
the relevant thermodynamic parameters � and � �intensive or
extensive�. In what follows, the function ��� ��� is assumed
to be known �from exact results or relevant approximations�.
Then an observable can be represented as an average over
the background fluctuations

���� = ������ =� d�f��������� , �1�

where the overbar denotes the corresponding averaging.
Note that the time scales separation is essential, otherwise
the “quenched” average in Eq. �1� does not make sense. In
general the function ���� keeps traces of the variable � �e.g.,

�̄ or higher moments�, which are omitted for brevity.
If the background does not undergo some internal sto-

chastic process independently of the system, then f��� is
a priori unknown. It should be determined from the informa-
tion on ����. This problem is typical for characterizing the
heterogeneous media through indirect �e.g., adsorption�
probes, where ���� is a measurement result. On the other
hand, in many applications �e.g., protecting storage, adaptive
learning, and control �21,30�� it is desirable to design the
background in the way leading to a well-defined behavior
����. In this case ���� should be considered as a cost �or
target� function.

III. MAXIMUM ENTROPY APPROACH

One deals with an inverse problem of extracting f���
from ����. This can be done within the maximum-entropy
inference scheme proposed by Jaynes �23�. Our uncertainty
on the background state can be estimated by an information
entropy, which is taken in the Shannon form,

H = −� d�f���ln�f���� . �2�

Maximizing H under the constraint �1� and requiring the nor-
malization for f��� we get the following conditional distri-
bution f���= f�� ��� �22�:

f����� =
e�������

Z
, Z =� d�e�������, �3�

where the Lagrange multiplier � should be found from the
constraint �1�, which is equivalent to solving

���� =
�

��
ln Z .

Plugging the distribution �3� back to Eq. �2� we obtain the
amount of uncertainty on the background state

H��� = − ����� + ln Z . �4�

If the initial �before the contact� uncertainty is H0, then the
amount of information I��� on the background, obtained by
driving �e.g., through varying �� the dynamic subsystem is
given by a reduction in the uncertainty

I��� = H0 − H��� .

In particular, the information rate takes a remarkably simple
form

�I���
��

= �� �����
��

−
�������

��
� . �5�

It is clear that the scheme gives a solution for f���, which is
free from adjustable parameters, providing an explicit link
between the data �or cost function� and the conditional the-
oretical estimation. From a more general point of view, we
get a connection of the information to the thermodynamic
response functions. Therefore, the response specificities �pla-
teaus, inflections, divergences� can be directly translated into
the required information even without entering into the mi-
croscopic details, determining this physical behavior �e.g.,
the crossover between different adsorption regimes or phase
transitions�. This allows one to study the conditions for a
maximum �I��� /��=0, �2I��� /��2�0, giving the criteria for
an optimal choice of the model and the probe. A sensitivity
to the “kernel” variation ��� ��� and to scattered and/or noisy
data ���� can also be easily controlled. On the other hand, if
f��� is already known, then our results can be used to esti-
mate the quality of the model ��� ��� through its matching to
the available data ����.

IV. CONSTRAINTS

Despite the apparently exponential form �3� the actual be-
havior of f��� depends on the nature of the constraint im-
posed and on a form of the constrained function ��� ���.
Such an ambiguity should not be considered as a shortcom-
ing of the theory. This is a consequence of the fact that we
are working under the condition of incomplete information.
Then, according to the Bayesian interpretation, a probability
should be considered as a measure of our ignorance rather
than an objective property. Nevertheless, our freedom in
choosing the constraints is restricted by any prior informa-
tion, coming through independent tests. On the other hand,
there are constraints which are “naturally” imposed either as
design principles �34� or as experimental or driving condi-
tions �20�. In what follows we discuss two relevant ex-
amples.

A. Entropy constraint

As is mentioned earlier, in many applications it is desir-
able to constrain the system internal order with the purpose
of meeting some survival or functionality objectives. In this
case it is natural to restrict the phase space by constraining
the thermodynamic entropy S�� ���. This idea was already
discussed in a slightly different context �20,22,30�. In par-
ticular, Crooks �20� has introduced a hyperensemble concept
for nonequilibrium systems. The central idea is that each
member �an ensemble� of the hyperensemble is characterized
by the same internal dynamics �Hamiltonian�, but is de-
scribed by a different probability distribution of its mi-
crostates, reflecting different driving paths away from the
equilibrium. Then the mean ensemble entropy can be consid-
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ered as a physically relevant constraint, measuring a distance
from the equilibrium �where the ensemble entropy is maxi-
mal�.

In this paper we consider a single dynamic system in a
slowly fluctuating � environment, such that for any � the
system state is characterized by the thermodynamic entropy
S�� ���. This is in contrast to Crooks �20�, who considered
the ensemble entropy in a probabilistic sense. Therefore, we
replace ��� ��� by S�� ���, and ���� by ����, with ���� be-
ing a prescribed average entropy. Then the distribution �3�
closely resembles the Einstein fluctuation formula. Note,
however, that f��� describes the background fluctuations and
for �=1 it becomes identical to the distribution of the system
fluctuations. In particular, for small fluctuations around an
equilibrium state �� ,�*� we may expand

S����� = S����*� −
1

2���,�*�
�� − �*�2, �6�

where ��� ,�*�= 	��−�*�2
 is the mean-square fluctuation in
the system when the background state is fixed at �=�*. In
this approximation the distribution �3� becomes Gaussian
and � can be determined combining Eqs. �6� and �1�. Finally,
we arrive at

�� − �*�2 = 	�� − �*�2
�S����*� − ����� . �7�

Note that S�� ��*� is the system equilibrium entropy. Conse-
quently S�� ��*�−����	0 and ��−�*�2	0 as it should be.
Therefore, in order to ensure a given response, ����, the
background should fluctuate coherently with the system fluc-
tuations and with the distance from the equilibrium state. As
we will see below, for large fluctuations this tendency also
takes place. A quite similar trend has been reported �28� for
fluctuations in the Tsallis statistics. In the limit of S�� ��*�
=���� we return to the standard equilibrium without fluctua-
tions in the background: f���=
��−�*�. The system fluctu-
ates according to its response function ��� ,�*�.

In order to study large background fluctuations and the
system statistics at different time scales we have to introduce
an explicit form for S�� ���. With this purpose we consider
an exactly solvable toy model—the ideal gas in contact with
a reservoir of fluctuating temperature �11,12�. This choice is
motivated by our goal to extract the most general and essen-
tial features, independent of approximations or the system
correlations. Therefore, we deal with the entropy per particle
S�� ���=5/2−ln���3�. Here � is the number density, �
=1/kT is the inverse temperature and � is the thermal de
Broglie wavelength. Introducing irrelevant scaling constants
�making � and � dimensionless�, S�� ��� can be reduced to

S����� = const − ln��� − 3
2 ln��� . �8�

Constraining the average temperature

�0 =� d�f���� �9�

and the entropy

���� =� d�f���S����� �10�

through the inference procedure discussed above, we obtain
the following distribution:

f��� =
��e−�/����

�������+1��� + 1�
, ���� =

�0

� + 1
, �11�

which is precisely the � distribution considered in the super-
statistical approach �11,12�, where the exponent � is related
to the noise intensity. In our case the Lagrange multiplier �
should be determined from the entropy constraint �10�

���� = S����0� + ln�� + 1� − 
��� −
1

�
, �12�

where 
���=d ln ���� /d�. Thus, the exponent � is deter-
mined by the distance ����−S�� ��0� from the equilibrium
state �� ,�0�. In particular, for large � we have found

���� = S����0� + 1/�2�� .

Therefore, � is related to the deviation from the standard
equilibrium, such that f���→
��−�0� and ����=S�� ��0� as
�→�.

At the short-time scale �of the order of the system relax-
ation time� the conditional energy distribution �E= p2 /2m, at
a given temperature �� is Gibbsian,

f�E��� =
e−�E

� dEe−�E

. �13�

The long-time behavior of the dynamic system can be repre-
sented as a superposition of its short-time statistics and the
background fluctuations—the superstatistical approach
�11,12�. In this spirit the long-time energy distribution can be
found by averaging over the temperature fluctuations

f�E� =� d�f���f�E��� = �0�1 −
�0E

1 − q
�−q

, �14�

where q=�+2. For E= p2 /2m we recover the power-law ve-
locity distribution found �11,12� in the superstatistical ap-
proach. Quite similar effects have recently been predicted to
occur in driven dissipative inelastic gases �6� and in driven
stochastic systems with multiplicative noise �7� or fluctuating
mass �14�. In a different context similar power laws were
found, applying the maximum-entropy inference to param-
etrized entropies �Tsallis �24� and Renyi �26��. But the mean-
ing of the entropic parameter is not always clear, while in our
case q is directly related to the constraint imposed. On the
other hand, the dynamic subsystem can also be considered as
supercorrelated �18� because it develops correlations accord-
ing to its internal dynamics and the coupling to the back-
ground. This induces a coupling of the energy and tempera-
ture fluctuations
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�E2 − Ē2���2 − �̄2� =
�� + 1�2

�� − 1��2 , �15�

where the averages are taken over the distributions �14� and
�11�.

Thus, because of the constraint imposed on the internal
order at longer times, the system develops avalanches �or
energy cascades� at any finite �. The avalanche size is char-
acterized by 1/�. Therefore, maintaining the distance from
the equilibrium, one can control the size of the rare “cata-
strophic” events. Our conclusion agrees with recent results
�17,20� suggesting that large rare fluctuations are enhanced
as a system is driven away from the equilibrium. This can be
organized in different ways, such as by powerful energy in-
jections at large velocity scales �6�, through an interplay of
additive and multiplicative noises �7�, or simply by maintain-
ing a finite-size system far from the thermodynamic
limit �17�.

B. Activity constraint

Other constraints are realized as driving conditions. For
instance, adsorption into porous media �9� is driven by a
difference between the chemical potential in the fluid bulk
�b and that inside the matrix M�� ,��. Adsorption equilib-
rium corresponds to M�� ,��=�b. Nevertheless, a recent
analysis �9� of experimental results reveals that the true equi-
librium seems to be hardly reachable because of very long
equilibration times and well-developed metastability. At cer-
tain conditions this leads to the hysteretic behavior accom-
panied by multiple metastable states of the fluid. On the
other hand, a complicated matrix topography makes one re-
sort to a statistical description �e.g., pore sizes, site energies,
etc.�. In this context the matrix can be considered as a me-
dium inducing a distribution f��1 , . . . ,�N� of metastable
states with local fluid densities �i in different spatial domains
i=1, . . . ,N. For simplicity the domains are assumed to be
uncorrelated: f��1¯�N�=�i f��i�. If the temperature � is
fixed, then the fluid state in each domain is given by a local
isotherm ��� ��i�. The overall isotherm is an average over
the domains

M��,�� =� d�i f��i������i� , �16�

where � is the average fluid density given by

� =� d�i f��i��i. �17�

The local isotherm is chosen in the ideal gas form
���� ��i�=ln��i�

3�. Maximizing the Shannon entropy under
constraints �16� and �17� we obtain the following local den-
sity distribution:

f��i� =
��i/������e−�i/����

������1 + ��
, ���� =

�

1 + �
, �18�

which is �for −1���0� of the form taken in Ref. �9� as a
fitting function for the description of the collective conden-
sation events �avalanches�. The Lagrange multiplier � should
be determined from the constraint �16�,

M��,�� = �����i = �� − ln�� + 1� + 
��� +
1

�
. �19�

Therefore, the exponent � is again related to the distance
M�� ,��−��� ��i=�� from the conventional equilibrium. The
latter appears as a limit of �→�, leading to f��i�=
��i−��
when M�� ,��=��� ��i=��.

It should be noted that the driving procedure is extremely
important. If, for instance, the chemical potential �pressure�
is free to relax according to a controlled particle injection,
then the constraint �16� should be removed ��=0� and the
system follows a different path with a purely exponential
distribution. This agrees with the conclusion made in Ref.
�9�. Moreover, it can be easily shown that a dependence on
the driving path is a generic feature of the coupled systems
considered here. For this purpose let us consider an adsorp-
tion of noninteracting species into a network with fluctuating
site-binding energy �, distributed according to some prob-
ability density f���. If the process is driven by increments in
the chemical potential �, then the conditional grand potential
is

������ = − ln�1 + e�+�� . �20�

The adsorption isotherm �coverage � vs �� is given by

���� = −
�������

��
= � e�+�

1 + e�+�
 . �21�

On the other hand, if the coverage � is maintained by con-
trolled injections, then the conditional free energy is

F����� = − �� + � ln � + �1 − ��ln�1 − �� . �22�

This allows one to calculate the chemical potential

� =
�F�����

��
= − �̄ + ln

�

1 − �
, �23�

which can be formally solved with respect to �,

� =
e�+�̄

1 + e�+�̄
. �24�

Therefore, the isotherm strongly depends on the driving con-
ditions. The main reason is a nonzero distribution width
�fluctuations� in the stochastic counterpart. This can be dem-
onstrated by expanding Eqs. �21� and �24� in terms of � and
analyzing the difference

� − � = �
n=2

�

an�����n − �̄n� , �25�

which vanishes only if the distribution is 
-like �no fluctua-
tions�. Note that our conclusion is quite general. It does not
depend on a shape of the distribution f��� and on the adsor-
bate dynamics. On the other hand, the isotherm difference on
the two driving paths can be used for the distribution estima-
tion, especially for distributions that are characterized by few
independent moments �e.g., Gaussian�. This could be a new
characterization tool, which is not based either on a critical
or on a hysteretic behavior.
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V. CONCLUSION

We have found that the major ingredients relevant to the
power-law distributions in composite systems are �i� the
widely separated time scales, �ii� nonvanishing background
fluctuations, and �iii� a constraint, imposed on the overall
system, holding the dynamic counterpart in a stationary non-
equilibrium state.

One might argue that the �- and the power-law distribu-
tions result trivially from the logarithmic form of the con-
strained functions. It should be noted, in this respect, that the
logarithmic shape of the thermal entropy is of quite general
nature, as this follows from the famous Boltzmann relation
S=k ln W. Interestingly, a quite similar mathematical inter-
play has been reported for glassy systems �5�. Namely, an
exponential distribution of local free energies has resulted in
a power-law distribution of the trapping times, leading to the
aging behavior.

The density distribution �18� is also not a specific feature
of the ideal gas. Our results do not alter if the interparticle
interactions are taken into account �e.g., as a long-range per-
turbation �35��;

�������i� = ln��i�
3� − U�i.

In that case the distribution �18� does not change and the
exponent � is determined by the distance from the equilib-
rium state ���� ��i=��.

The main advantage of the approach developed here is
that it avoids parametrized entropy measures and allows one
to apply the superstatistical scheme to coupled systems in
which the stochastic background does not fluctuate indepen-
dently of the dynamic counterpart, such that the fluctuations
of conjugate variables �e.g., temperature and energy� are not
independent.

In the context of our study the nonextensitivy in systems
with power-law distributions is a direct consequence of the
global nature of the constraint. This makes it impossible to
decompose the system into noncorrelated parts. Moreover,
for any background distribution of nonzero width, the system
thermodynamic response strongly depends on a driving path.

Our findings agree with the key features of the self-
organized criticality processes �2,33�, where power-law dis-
tributions emerge as a consequence of an infinitely slow
driving under a global “supervision.” The background evo-
lution could be considered as an analog of the driving, while
the constraint plays a role of supervision. This induces an
infinitely long-range space-time correlation; namely, the rela-
tively fast dynamic subsystem develops avalanches in re-
sponse to a history of the driving. In our terms this fact is
reflected by the difference in the energy distribution at dif-
ferent time scales.
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